
basics on pwn and computer architecture

pwn 101

presented by ren

whoami

pwn player for thehackerscrew
passionate and curious abt
computers
started pwn during covid

Sidenote
about ctfs

what is pwn?

why is everyone so
afraid of doing pwn?

what even is a computer?
Computer Architecture 101

processor

memory

processor

memory

add up the values in 0x00 and
0x01, then store it in 0x02

processor

memory

processor
processor

RAM

RAM

ROM

Harvard architecture Von Neumann Architecture
(not gonna go into this)

Pointers

Pointers

pointers are just normal values
in memory

Pointers

Dereferencing
Retrieving values: *addr
Eg: *0x10 gives you 0x37

can also be done with addr[0]
in this context,

0x10[0] is the same as *0x10
0x10[1] is the same as *0x11
0x10[2] is the same as *0x12

this depends on the type of ptr

Pointers

Dereferencing
Changing values: *addr = ...

Eg: *0x10 = 0xff

can also be done with
0x10[0] = 0xff

Pointers

arrays are just pointers!

strings are just
char pointers!

(ptr that points to chars)

char arr[3] = {0x41,0x42,0x43};

these arrays can be called as
buffers as well

Pointers

char arr[3] = {0x41,0x42,0x43};

what if:
print(arr[get_int(stdin)]);

Pointers

char arr[3] = {0x41,0x42,0x43};

what if:
print(arr[get_int(stdin)]);

arr[3] and arr[-1] would lead to
oob read!

arr[-1] would even leak the
memory

address of arr!

Pointers

char arr[3] = {0x41,0x42,0x43};

what if:
arr[get_int(stdin)] = get_int(stdin);

Pointers

what if:
arr[get_int(stdin)] = get_int(stdin);

you could change where arr is
pointed, by doing

arr[-1] = 0x10!

General Purpose Registers

processor

Instructions
10010000000000111110111

Instructions
10010000000000111110111

Assembler

Instructions
10010000000000111110111

Assembler

add rdi, rsi

multiprocessing
(not important right now)

the process you’re pwning is not the only process there is

visualising a process

let’s take a look
at a real process

source code ELF binary process

compiler ./main

Making the binary

> gcc main.c -o main -m32

viewing the process in gdb

> gdb main
> set disassembly-flavor intel
> r

looking at instructions @ main

>> disassemble maind

the stack

Last in First out

function calls

function calls

esp +4 when a push happens
esp -4 when a pop happens

red boxes indicate that the
instruction is just executed

function calls

function calls

function calls

stack frame

local variables

calling convention
in 32 bits x86

sum()

sum()

ebp chaining

sum()

eax: 0x1337
edx: 0x4242

sum()

eax: 0x5579
edx: 0x4242

returning to main

eax: 0x5579
edx: 0x4242

returning to main

eax: 0x5579
edx: 0x4242
eip:0x565561cd

returning to main

cleaning up the stack frame

leave = mov esp,ebp; pop ebp

ret

entry points

play with it yourself!
compile the binary in 32 bit, and explore the process yourself in gdb

Useful commands in gdb:
> info registers

show register values
> break *addr

sets breakpoint at address
when you set a breakpoint at addr, the process stops executing when

rip = addr
Note: the process stops before the instruction is executed, not after

> c
let the process continue executing after reaching a breakpoint

> si
execute the current instruction and stop again on the next instruction

> r
run/rerun the binary/restart the process

> x/[n]wx addr
examine/print out n amount of 4 bytes of a memory address

Eg: x/24wx 0xffffd460 OR x/24wx $esp (for registers)

gdb plugins

https://github.com/pwndbg/pwndbg

https://github.com/hugsy/gef

experiment with other stuff!
Edit/Write your own main.c file, compile it and run it in gdb.

Explore how:
- the process looks like in 64 bit
- what happens when you pass a lot of arguments to
a function in 64 bit (calling convention)
- global variables are stored
- arrays work
- anything you want

Exploitation 101

buffer overflows

char buf[0x10];
read 0x100 bytes into buf;

buffer overflows

char buf[0x10];
read 0x100 bytes into buf;

buffer overflows

char buf[0x10];
read 0x100 bytes into buf;

PIE
Position Independant Executable

1st run 2nd run 3rd run

0x56634000

0x56635000

0x56636000

0x56637000

0x56603000

0x56604000

0x56605000

0x56606000

0x5656b000

0x5656c000

0x5656d000

0x5656e000

stack canary
every process has a

different, random canary

bof to win

compile with
> gcc main.c -o main -m32 -no-pie -fno-stack-protector

pwntools

https://docs.pwntools.com/en/stable/

bof to win

0xffffd3b8+0x4 - 0xffffd390 = 0x2c

bof to win

what if there’s no
win() function?

libc

ret2libc
Aim: mimic a system(“bin/sh”) call

what does the stack look like when
system(“/bin/sh”) is called?

ret2libc

what does the stack look like when
system(“/bin/sh”) is called?

Aim: mimic a system(“bin/sh”) call

ret2libc

ret2libc

compile with
> gcc main.c -o main -m32 -no-pie -fno-stack-protector

ret2libc

ret2libc

0xf7f3b0d5 - 0xf7dc9cd0 = 0x171405

ret2libc

Return-Oriented Programming

gadget A

gadget C

gadget B

Return-Oriented Programming

gadget A

gadget C

gadget B

Return-Oriented Programming

gadget A

gadget C

gadget B

Return-Oriented Programming

gadget A

gadget C

gadget B

Return-Oriented Programming

> gcc main.c -o main -no-pie -fno-stack-protector -masm=intel

Mobile User

Final Words

Questions

Thanks for
listening

twitter: @zeynarz
https://zeynarz.github.io

